top of page

I am a researcher at NOVA School of Science and Technology, Universidade NOVA de Lisboa. I hold a PhD in Biotechnology, a Master’s degree in Applied Mathematics and a 5-year degree in Marine Biology. My main research activities have been focused on the development of mathematical and computational tools based on data mining and machine learning to extract meaningful information from high-dimensional data generated by high-throughput technologies. I've been developing my work in the context of precision medicine, bioprocess monitoring, quality control, and marine ecology applications.

RESEARCH AREAS

Molecule

MACHINE LEARNING

Test Tubes

MARINE SCIENCE

BIOINFORMATICS

Gears

BIOENGINEERING

Fishing Boat
Home: Skills

WORK EXPERIENCE

RESEARCHER

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

​

RESEARCHER

Instituto de Telecomunicações

October 2016 - August 2018

April 2011 - September 2016

POST-DOCTORAL FELLOW

Instituto de Telecomunicações

POST-DOCTORAL FELLOW

Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico

Home: Experience

December 2019 -

January 2019 - December 2019

September 2018 - December 2018

POST-DOCTORAL FELLOW

Instituto de Engenharia de Sistemas e Computadores - Investigação e  Desenvolvimento (INESC-ID)

EDUCATION

February 2011

BIOTECHNOLOGY

INSTITUTO SUPERIOR TÉCNICO, UNIVERSIDADE DE LISBOA

PhD Dissertation: Advances in near-infrared hyperspectral imaging for pharmaceutical anti-counterfeiting

June 2006

APPLIED MATHEMATICS

INSTITUTO SUPERIOR DE AGRONOMIA, UNIVERSIDADE DE LISBOA

MSc Dissertation: Strategies for avoiding overparametrization in statistical catch-at-age methods

July 2007 - August 2007

INTERNSHIP, ELECTRICAL ENGINEERING

DEPARTMENT, UNIVERSITY OF WASHINGTON, USA

Project: Statistical estimation in big data sets

September 2003

BIOLOGY
FACULDADE DE CIÊNCIAS, UNIVERSIDADE DE LISBOA

5-year degree Dissertation: Feeding ecology and morphological variation of Macroramphosus spp. and Capros aper in the Portuguese coast

Home: Education

PROJECTS

​

January 2026 -

Researcher

Multi-observation tools for the detection of harmful algal blooms and forecasting shellfish contamination (MultiALIVE)
Funding: Portuguese Foundation for Science and Technology (16952, LISBOA2030-FEDER-00824000, ALGARVE-FEDER-00824000)

​

January 2024 -

Researcher

Artificial Intelligence and Simulation for Converting Nanotoxicity Data to Diagnostic Information (ARTIS)
Funding: Albanian Academy of Sciences

​

May 2023 -

Researcher

De-risking metabolic, environmental and behavioral determinants of obesity in children, adolescents and young adults (PAS GRAS)
Funding: Horizon Europe (101080329)

​

March 2023 -

Management Committee Member and Working Group Leader

Cost Action CA21165 - Personalized medicine in chronic kidney disease: improved outcome based on Big Data (PerMediK)
Funding: European Cooperation in Science and Technology

​

September 2023 -

Working Group Member

Cost Action CA22103 - A comprehensive network against brain cancer (Net4Brain)
Funding: European Cooperation in Science and Technology
​

​

January 2022 - December 2025

Researcher

OMICs approaches to reveal the anticancer properties of Virgin Olive Oil (VOOmics)
Funding: Portuguese Foundation for Science and Technology (
PTDC/BAA-AGR/4732/2021)

​​

October 2021 -

Researcher

Pacto da Bioeconomia Azul – WP Vertical Bivalves
Funding: Plano de Recuperação e Resiliência (PRR) (C644915664-00000026)

​

March 2021 - November 2024

Principal Investigator

Multi-omic networks in gliomas (MONET)
Funding: Portuguese Foundation for Science and Technology (PTDC/CCI-BIO/4180/2020)

​

April 2020 - September 2023

Principal Investigator

A machine leaning-based forecasting system for shellfish safety (MATISSE)
Funding: Portuguese Foundation for Science and Technology (DSAIPA/DS/0026/2019)

​

January 2020 - September 2023

Researcher

Artificial intelligence on the management of the degree of readiness in urban firefighting (AI-4-MUFF)
Funding: Portuguese Foundation for Science and Technology (DSAIPA/DS/0088/2019)

​

January 2020 - September 2023

Management Committee Member

Cost Action CA18131 - Statistical and machine learning techniques in human microbiome studies (ML4MICROBIOME)
Funding: European Cooperation in Science and Technology 

 

February 2019 - September 2022

Substitute Member

Cost Action CA17718 - Identifying biomarkers through translational research for prevention and stratification of colorectal cancer (TRANSCOLONCAN)
Funding: European Cooperation in Science and Technology 


January 2019 - December 2021

Researcher

Personalized therapy for rheumatic diseases via machine learning (PREDICT)
Funding: Portuguese Foundation for Science and Technology (PTDC/CCI-CIF/29877/2017)

October 2016 - December 2019

Researcher

Personalizing cancer therapy through integrated modeling decision (PERSEIDS)
Funding: Portuguese Foundation for Science and Technology (PTDC/EMSSIS/0642/2014)

 

September 2016 - August 2018

Post-doctoral grant

Statistical multi-omics understanding of patient samples (SOUND)
Funding: European Union (H2020 No. 633974)


April 2011 - March 2012

Post-doctoral grant

Integrated methodologies for the development of bi- and three-valent DNA-vaccine against Helycobacter pylori

Funding: Portuguese Foundation for Science and Technology (PTDC/BIO/69242/2006)


April - September 2006

Research grant

Geographycal heterogeneity of the incidence of Tuberculosis in Portugal
Funding: Directorate General of Health, Portugal


March - August 2005

​Research grant

Importance of nurseries areas for the maintenance of important marine commercial fish (NURSERIES)

Funding: Direcção Geral de Pescas e Aquicultura (FEDER 22-05-01-FDR-00037-Programa MARE)


September 2003 - February 2005

​Research grant

New methods for assessing fisheries resources (NeoMAv)
Funding: Former Portuguese Institute for Fisheries and Sea Research (IPIMAR) (QCA-3/MARE-FEDER)


September 2002 - February 2005

​Research grant

PELÁGICOS

Funding: Portuguese Foundation for Science and Technology (FCT-PLE/13/00)


October 1999 - June 2001

Undegraduate 

Integrated functioning of the Tagus estuary and continental shelf, in response to anthropogenic pressure and global changes (FESTA II)

Funding: Portuguese Foundation for Science and Technology (POCTI/MGS/34457/99)

​

Home: Text
Home: Text

PUBLICATIONS

BOOK CHAPTERS

​

  1. Pessanha, S.;  Silva, J.; Lima, R.R.; Lopes, M.B. (2025). Raman spectroscopic studies on mineralized tissues and skin appendages. In: Singh V.K., Applied Raman Spectroscopy, Concepts, Instrumentation, Chemometrics, and Life Science Applications, Chapter 10, Elsevier, DOI:10.1016/B978-0-443-21834-7.00010-4

  2. Lopes, M.B.; Vinga, S. (2021). Learning Biomedical Networks: Toward Data-Informed Clinical Decision and Therapy. In: Pham T.D., Yan H., Ashraf M.W., Sjoberg F. (eds) Advances in Artificial Intelligence, Computation, and Data Science. Computational Biology. Springer, Cham, DOI:10.1007/978-3-030-69951-2_3

​

ARTICLES IN INTERNATIONAL PEER-REVIEWED JOURNALS

​

  1. Coletti, R.; Cerdeira, J.O.; Raydan, M.; Lopes, M.B. (2025).  An unsupervised tool for biomarker discovery and cancer subtyping applied to glioblastoma. BioData Mining 18: 85, DOI:10.1186/s13040-025-00500-6

  2. Mendonça, M.L.; Coletti, R.; Martins, E.P.; Gonçalves, C.S.; Costa, B.M.; Vinga, S.; Lopes, M.B. (2025). Updating TCGA glioma classification through integration of molecular data following the latest WHO guidelines. Scientific Data, 12: 935, DOI:10.1038/s41597-025-05117-2

  3. Pessanha, S.; Fortes, A.; Lopes, M.B.; Buzanich, A.G.; Ortega-Feliu, I.;  Respaldiza, M.A.; Tubio, B.G.; Makarova, A.; Smirnov, D.; Kumar, S.; Mata, A.; Silveira, J. (2025). Multi-technique computational assessment of fluoride uptake in enamel using PIGE, NEXAFS, and Raman spectroscopy. Journal of Materials Chemistry B, 13: 6366, DOI:10.1039/D5TB00213C

  4. Coletti, R.; Carrilho, J.F.; Martins, E.P.; Gonçalves, C.S.; Costa, B.M.; Lopes, M.B. (2025). A novel tool for multi-omics network integration and visualization: A study of glioma heterogeneity. Computers in Biology and Medicine, 188:109811, DOI:10.1016/j.compbiomed.2025.109811

  5. Lopes, M.B.; Coletti, R.; Duranton, F.; Glorieux, G.; Jaimes Campos, M.A.; Klein, J.; Ley, M.; Perco, P.; Sampri, A.; Tur-Sinai, A. (2025). The omics-driven machine learning path to cost-effective precision medicine in chronic kidney disease. Proteomics, 0: e202400108, DOI:10.1002/pmic.202400108

  6. Kastendiek, N.; Coletti, R.; Gross, T.; Lopes M.B. (2024). Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification. BioData Mining, 17: 56, DOI:10.1186/s13040-024-00411-y

  7. Musib, L.; Coletti, R.; Lopes, M.B.; Mouriño, H.; Carrasquinha, E. (2024). Priority-Elastic net for binary outcome prediction based on multi-omics data. BioData Mining, 17:45, DOI:10.1186/s13040-024-00401-0

  8. Coletti, R.; Leiria de Mendonça, M.; Vinga, S.; Lopes, M.B. (2024). Inferring diagnostic and prognostic gene expression signatures across WHO glioma classifications: A network-based approach. Bioinformatics and Biology Insights, 18, DOI:10.1177/11779322241271535

  9. Porreca, A.; Ibrahimi, E.; Maturo, F.; Marcos Zambrano, L.J.; Meto, M.; Lopes, M.B. (2024). Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data. Journal of Medical Microbiology, 73: 001903, DOI:10.1099/jmm.0.001903

  10. Vieira, F.G.; Bispo, R.; Lopes, M.B. (2024). Integration of multi-omics data for the classification of glioma types and identification of novel biomarkers. Bioinformatics and Biology Insights, 18, DOI:10.1177/ 11779322241249563

  11. Martins, S.; Coletti, R.; Lopes, M.B. (2023). Disclosing transcriptomics network-based signatures of glioma heterogeneity using sparse methods. BioData Mining, 16: 26, 2023. DOI:10.1186/s13040-023-00341-1

  12. Marcos-Zambrano, L.J.; López-Molina, V.M.; Bakir-Gungor, B.; Frohme, M.; Karaduzovic-Hadziabdic, K.; Klammsteiner, T.; Ibrahimi, E.; Lahti, L.; Turukalo, T.L.; Dhamo, X.; Simeon, A.; Nechyporenko, A.; Pio, G.; Piotr Przymus, P.; Sampri, A.; Trajkovik, V.; Lacruz-Pleguezuelos, B.; Aasmets, O.; Ricardo Araujo, R.; Anagnostopoulos, I.; Aydemir, O.; Berland, M.; Calle, M.J.; Ceci, M.; Duman, H.; Güdogdu, A.; Havulinna, A.S.; Bra, K.H.N.K.; Kalluci, E.; Karav, S.; Lode, D.; Lopes M.B. et al. (2023). A toolbox of machine learning software of support microbiome analysis. Frontiers in Microbiology, 14: 1250806, DOI:10.3389/fmicb.2023.1250806

  13. Ibrahimi, E.; Lopes, M.B.; Dhamo, X.; Simeon, A.; Shigdel, R.; Hron, K.; Stres, B.; D'Elia, D.; Berland, M.; Marcos-Zambrano, L.J. (2023). Overview of data preprocessing for machine learning applications in human microbiome research. Frontiers inMicrobiology, 14: 1250909, DOI:10.3389/fmicb.2023.1250909

  14. D'Elia, D.; Truu, J.; Lahti, L.; Berland, M.; Papoutsoglou, G.; Ceci, M.; Zomer, A.; Lopes, M.B.; Ibrahimi, E. et al. (2023). Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action. Frontiers in Microbiology, 14: 1257002, DOI:10.3389/fmicb.2023.1257002

  15. Papoutsoglou, G.; Tarazona, S.; Lopes, M.B.; Klammsteiner, T.; Ibrahimi, E.; Eckenberger, J.; Novielli, P. et al. (2023). Machine learning approaches in microbiome research: challenges and best practices. Frontiers in Microbiology,14:1261889, DOI:10.3389/fmicb.2023.1261889

  16. Peixoto, C.; Lopes, M.B., Martins, M., Casimiro, S.; Sobral, D. et al. (2023). Identification of biomarkers predictive of metastasis development in early-stage colorectal cancer using network-based regularization. BMC Bioinformatics, 24(1): 17, DOI:10.1186/s12859-022-05104-z

  17. Carrilho, J.; Lopes, M.B (2022). Classification and biomarker selection in lower-grade glioma using robust sparse logistic regression applied to RNA-seq data. Brazilian Journal of Biometrics, 40: 371:381, DOI:10.28951/bjb.v40i4.634

  18. Cruz, R.C.; Costa, P.R.; Krippahl, L.; Lopes, M.B (2022). Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks. Knowledge-Based Systems, 257: 109895, DOI:10.1016/j.knosys.2022.109895

  19. Patrício A.; Lopes, M.B.; Costa, P.R.; Costa, R.S.; Henriques, R.; Vinga, S. (2022). Time-Lagged Correlation Analysis of Shellfish Toxicity Reveals Predictive Links to Adjacent Areas, Species, and Environmental Conditions. Toxins, 14(10): 679, DOI:10.3390/toxins14100679

  20. Jensch, A.; Lopes, M.B.; Vinga, S.; Radde N. (2022). ROSIE: RObust Sparse ensemble for outlIEr detection and gene selection in cancer omics data. Statistical Methods in Medical Research, 1-12, DOI:10.1177/09622802211072456

  21. Lopes, M.B.; Martins, E.P.; Vinga, S.; Costa, B.M. (2021). The Role of Network Science in Glioblastoma. Cancers, 13(5): 1045, DOI:10.3390/cancers13051045

  22. Cruz, R.C.; Costa, P.R.; Vinga, S.; Krippahl, L.; Lopes, M.B. (2021). A Review of Recent Machine Learning Advances for Forecasting Harmful Algal Blooms and Shellfish Contamination. Journal of Marine Science and Engineering 9 3 (2021): 283, DOI:10.3390/jmse9030283

  23. Marcos-Zambrano, L.J.; Karaduzovic-Hadziabdic, K.; Loncar Turukalo, T.; Przymus, P.; Trajkovik, V.; et al. (2021). Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Frontiers in Microbiology 12: 634511, DOI:10.3389/fmicb.2021.634511

  24. Moreno-Indias, I.; Lahti, L.; Nedyalkova, M.; Elbere, I.; Roshchupkin, G.; Adilovic, M.; Aydemir, O.; et al. (2021). Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Frontiers in Microbiology, 12: 635781, DOI:10.3389/fmicb.2021.635781

  25. Peixoto, C.; Lopes, M.B.; Martins, M.; Costa, L.; Vinga, S. (2020). TCox: correlation-based regularization applied to colorectal cancer survival data. Biomedicines, 8(11): 488, DOI:10.3390/biomedicines8110488

  26. Lopes, M.B., Vinga, S. (2020) Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data. BMC Bioinformatics, 21: 50, DOI:10.1186/s12859-020-3390-4

  27. Lopes, M.B.; Casimiro, S.; Vinga, S. (2019). Twiner: correlation-based regularization for identifying common cancer gene signatures. BMC Bioinformatics, 20: 356, DOI:10.1186/s12858-019-2937-8

  28. Segaert, P.; Lopes, M.B.; Vinga, S.; Rousseeuw, P.J. (2018). Robust identification of target genes and outliers in triple-negative breast cancer data. Statistical methods in medical research, 28(10-11): 3042-56, DOI:10.1177/0962280218794722

  29. Lopes, M.B.; Veríssimo, A.; Carrasquinha, E.; Casimiro, S.; Beerenwinkel N.; Vinga, S. (2018). Ensemble outlier detection and gene selection in triple-negative breast cancer data. BMC bioinformatics, 9: 168, DOI:10.1186/s12859-018-2149-7

  30. Lopes, M.B.; Amorim, A.; Calado, C.R.C.; Costa, P.R. (2018). Determination of cell abundances and paralytic shellfish toxins in cultures of the dinoflagellate Gymnodinium catenatum by Fourier Transform Near Infrared spectroscopy. Journal of Marine Science and Engineering, 6 (4): 147-147, DOI:10.3390/jmse6040147

  31. Lopes, M.B.; Calado, C.R.C. (2018). Assessing plasmid bioprocess reproducibility and C-source uptake stage through multivariate analysis of offline and online data. Journal of Chemical Technology and Biotechnology, 93 (10): 3056-3066, DOI:10.1002/jctb.5666

  32. Carrasquinha, E.; Veríssimo, A.; Lopes, M.B.; Vinga, S. (2018). Identification of influential observations in high-dimensional cancer survival data through the rank product test. BioData Mining, 11: 1, DOI:10.1186/s13040-018-0162-z

  33. Sampaio, P.N.; Sales, K.C.; Rosa, F.O.; Lopes, M.B.; Calado, C.R.C. (2017). High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production. Journal of Industrial Microbiology and Biotechnology, 44 (1): 49-61, DOI:10.1007/s10295-016-1865-0

  34. Sales, K.C.; Rosa, F.; Cunha, B.R.; Sampaio, P.N.; Lopes, M.B.; Calado, C.R.C. (2017). Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis. Biotechnology Progress, 33 (2): 285-298, DOI:10.1002/btpr.2378

  35. Lopes, M.B.; Calado, C.R.C.; Figueiredo, M.A.T.; Bioucas-Dias, J.M. (2016). Does nonlinear modeling play a role in plasmid bioprocess monitoring using Fourier Transform Infrared spectra? Applied Spectroscopy, 71(6): 1148-1156, DOI:10.1177/0003702816670913

  36. Rosa, F.; Sales, K.C.; Carmelo, J.G.; Fernandes-Platzgummer, A.; da Silva, C.L.; Lopes, M.B.; Calado, C.R.C. (2016). Monitoring the ex-vivo expansion of human mesenchymal stem/stromal cells in xeno-free microcarrier-based reactor systems by MIR spectroscopy. Biotechnology Progress, 32 (2): 447-455, DOI:10.1002/btpr.2215

  37. Lopes, M.B.; Gonçalves, G.A.L.; Felício-Silva, D.; Prather, K.L.J.; Monteiro, G.A.; Prazeres, D.M.F.; Calado, C.R.C. (2015). In situ NIR spectroscopy monitoring of plasmid production processes: Effect of producing strain, medium composition and the cultivation strategy. Journal of Chemical Technology and Biotechnology, 90 (2): 255-261, DOI:10.1002/jctb.4431

  38. Rosa, F.; Sales, K.C.; Cunha, B.R.; Couto, A.; Lopes, M.B.; Calado, C.R.C. (2015). A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses. Analytical and bioanalytical chemistry, 407 (26): 8097-8108, DOI:10.1007/s00216-015-8983-9

  39. Sales, K.C.; Rosa, F.; Sampaio, P.N.; Fonseca, L.P.; Lopes, M.B.; Calado, C.R.C. (2015). In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production. Applied spectroscopy, 69 (6): 760-772, DOI:10.1366/14-07588

  40. Lopes, M.B.; Martins, G.; Calado, C.R.C. (2014). Kinetic modeling of plasmid bioproduction in Escherichia coli DH5a cultures over different carbon-source compositions. Journal of Biotechnology, 186: 38-48, DOI:10.1016/j.jbiotec.2014.06.022

  41. Sampaio, P.N.; Sales, K.C.; Rosa, F.O.; Lopes, M.B.; Calado, C.R.C. (2014). In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains. Journal of Biotechnology, 188: 148-157, DOI:10.1016/j.jbiotec.2014.07.454

  42. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2011). Study on the effect of pixel resolution and blending grade on near-infrared hyperspectral unmixing of tablets. Applied Spectroscopy, 65 (2): 193-200, DOI:10.1366/10-06079

  43. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2010). Quantification of components in non-homogenous pharmaceutical tablets using near infrared reflectance imaging. Journal of Near Infrared Spectroscopy, 18 (5): 333-340, DOI:10.1255/jnirs.897

  44. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2010). 'Reply to the comments on "near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets"'. Analytical Chemistry, 82 (20): 8753-8754, DOI:10.1021/ac102443w

  45. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2010). Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets. Analytical Chemistry, 82 (4): 1462-1469, DOI:10.1021/ac902569e

  46. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2009). Determination of the composition of counterfeit Heptodin™ tablets by near infrared chemical imaging and classical least squares estimation. Analytica Chimica Acta, 641 (1-2): 46-51, DOI:10.1016/j.aca.2009.03.034

  47. Lopes, M.B.; Wolff, J.-C. (2009). Investigation into classification/sourcing of suspect counterfeit Heptodin™ tablets by near infrared chemical imaging. Analytica Chimica Acta, 633 (1): 149-155, DOI:10.1016/j.aca.2008.11.036

  48. Brás, L.P.; Lopes, M.B.; Ferreira, A.P.; Menezes, J.C. (2008). A bootstrap-based strategy for spectral interval selection in PLS regression. Journal of Chemometrics, 22 (11-12): 695-700, DOI:10.1002/cem.1153

  49. Cabral, H.N.; Vasconcelos, R.; Vinagre, C. ; França, S.; Fonseca, V.; Maia, A.; Reis-Santos, P.; Lopes, M.B.; Ruano, M.; Campos, J.; Freitas, V.; Santos, P.T.; Costa, M.J. (2007). Relative importance of estuarine flatfish nurseries along the Portuguese coast. Journal of Sea Research, 57 (2-3): 209-217, DOI:10.1016/j.seares.2006.08.007

  50. Lopes, M.B.; Murta, A.G.; Cabral, H.N. (2006). Discrimination of snipefish Macroramphosus species and boarfish Capros aper morphotypes through multivariate analysis of body shape. Helgoland Marine Research, 60 (1): 18-24, DOI:10.1007/s10152-005-0010-7

  51. Lopes, M.B.; Murta, A.G.; Cabral, H.N. (2006). The ecological significance of the zooplanktivores, snipefish Macroramphosus spp. and boarfish Capros aper, in the food web of the south-east North Atlantic. Journal of Fish Biology, 69 (2): 363-378, DOI:10.1111/j.1095-8649.2006.01093.x

  52. Cabral, H.N.; Lopes, M.B.; Loeper, R. (2002). Trophic niche overlap between flatfishes in a nursery area on the Portuguese coast. Scientia Marina, 66 (3): 293-300, DOI:10.3989/scimar.2002.66n3293

​​

ARTICLES IN CONFERENCE PROCEEDINGS

​

  1. Brandão, J.; Lopes, M.B. (2024). Carrasquinha E. Refining gene selection and outlier detection in glioblastoma based on a consensus approach for regularized survival models. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science, vol 14848. Spinger, Cham, DOI:10.1007/978-3-031-64629-4_2

  2. Ribeiro, D.; Ferraz, F.; Lopes, M.B.; Rodrigues, S.; Costa, P.R.; Vinga, S.; Carvalho, A.M. (2023). Causal graph discovery for explainable insights on marine biotoxin shellfish contamination. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham, DOI:10.1007/978-3-031-48232-8_44

  3. Ferraz, F.; Ribeiro, D.; Lopes, M.B.; Pedro, S.; Susana Vinga, Carvalho A.M. (2023). Comparative analysis of machine learning models for time-series forecasting of Escherichia coli contamination in Portuguese shellfish production areas. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham, DOI:10.1007/978-3-031-53969-5_14

  4. Coletti, R.; Lopes, M.B. (2023) Multi-omics data integration and network inference for biomarker discovery in glioma. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science, vol 14116. Springer, Cham, DOI:10.1007/978-3-031-49011-8_20

  5. Baião, A.R.; Peixoto, C.; Lopes, M.B.; Costa, P.R.; Carvalho, A.M.; Vinga, S. (2023). Evaluating the causal role of environmental data in shellfish biotoxin contamination on the Portuguese coast. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science, vol 14116. Springer, Cham, DOI:10.1007/978-3-031-49011-8_26

  6. Ibrahimi, E.; Norouzirad, M.; Meto, M.; Lopes, M.B. (2023). Regularized generalized linear models to disclose host-microbiome associations in colorectal cancer. In Proceedings of the 6th International Conference on Mathematics and Statistics (ICoMS 2023). Association for Computing Machinery, New York, USA, DOI:10.1145/3613347.3613362

  7. Diegues, I.; Vinga, S.; Lopes, M.B. (2020). Identification of common gene signatures in microarray and RNA-sequencing data using network-based regularization. In: Rojas I., Valenzuela O., Rojas F., Herrera L., Ortuño F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science, vol 12108. Springer, Cham, DOI:10.1007/978-3-030-45385-5_2

  8. Carrasquinha, E.; Veríssimo, A.; Lopes, M.B.; Vinga, S. (2020). Network-based variable selection for survival outcomes in oncological data. In: Rojas I., Valenzuela O., Rojas F., Herrera L., Ortuño F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science, vol 12108. Springer, Cham, DOI:10.1007/978-3-030-45385-5_49

  9. Veríssimo, A.; Lopes, M.B.; Carrasquinha, E.; Vinga, S. (2020). Random sample consensus for the robust identification of outliers in cancer data. In: Cazzaniga P., Besozzi D., Merelli I., Manzoni L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science, vol 12313. Springer, Cham, DOI:10.1007/978-3-030-63061-4_11

  10. Villa-Brito, J.; Lopes, M.B.; Carvalho, A.; Vinga, S. (2020). Unravelling Breast and Prostate Common Gene Signatures by Bayesian Network Learning. In: Raposo M., Ribeiro P., Sério S., Staiano A., Ciaramella A. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2018. Lecture Notes in Computer Science, vol 11925. Springer, Cham, DOI:10.1007/978-3-030-34585-3_25

  11. Lopes, M.B.; Veríssimo, A.; Carrasquinha, E.; Vinga, S. (2019) On the role of hub and orphan genes in the diagnosis of breast invasive carcinoma. In: Nicosia G., Pardalos P., Umeton R., Giuffrida G., Sciacca V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science, vol 11943. Springer, Cham, DOI:10.1007/978-3-030-37599-7_52

  12. Carrasquinha, E.; Veríssimo, A.; Lopes, M.B.; Vinga, S. (2019). Variable selection and outlier detection in regularized survival models: application to melanoma gene expression data. In: Nicosia G., Pardalos P., Giuffrida G., Umeton R., Sciacca V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science, vol 11331. Springer, Cham, DOI:10.1007/978-3-030-13709-0_36

  13. Sampaio, P.N.; Cunha, B.; Rosa, F.; Sales, K.; Lopes, M.B.; Calado, C.R.C. (2015). Molecular fingerprint of human gastric cell line infected by Helicobacter pylori, DOI:10.1109/ENBENG.2015.7088877

  14. Lopes, M.B.; Sales, K.C.; Lopes, V.V.; Calado, C.R.C. (2013). Real-time plasmid monitoring of batch and fed-batch Escherichia coli cultures by NIR spectroscopy, DOI:10.1109/ENBENG.2013.6518394

  15. Lopes, M.B.; Scholtz, T.; Silva, D.; Santos, I.; Silva, T.; Sampaio, P.; Couto, A.; Lopes, V.V.; Calado, C.R.C. (2012). Modelling, monitoring and control of plasmid bioproduction in Escherichia coli cultures, DOI:10.1109/ENBENG.2012.6331370

  16. Lopes, M.B.; Bioucas-Dias, J.M.; Figueiredo, M.A.T.; Wolff, J.-C.; Mistry, N.; Warrack, J. (2011). Comparison of near infrared and Raman hyperspectral unmixing performances for chemical identification of pharmaceutical tablets, DOI:10.1109/WHISPERS.2011.6080869

  17. Lopes, M.B.; Bioucas-Dias, J.M.; Figueiredo, M.A.T.; Wolff, J.-C. (2009). Spectral unmixing via minimum volume simplices: Application to near infrared spectra of counterfeit tablets, DOI:10.1109/WHISPERS.2009.5289081

​

ARTICLES IN NATIONAL JOURNALS

​

  1. Santos, H.; Sousa, D.; Caldeira, P.; Lopes, M.B.; Açucena, F.; Ramos, A.; Moniz, M.; Lopes, A.; Guerreiro, H. (2008). Survival and prognosis of patients with percutaneous endoscopic gastrostomy. Revista APNEP, 2: 157-159 (in portuguese)

​

ARTICLES IN SCIENTIFIC NEWSLETTERS

​

  1. Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. (2011). Investigating counterfeit medicines - the near infrared chemical imaging picture. NIR News, 22: 10-18, DOI:10.1255/nirn.1243

​​

SOFTWARE

​

  1. Veríssimo, A.; Vinga, S.; Carrasquinha, E.; Lopes, M.B. (2018). glmSparseNet - Network centrality metrics for elastic-net regularized models. Bioconductor R package 

​

​

 

 

 

​

​

​

​

CONTACT

NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

Home: Contact

©2019 by Marta Belchior Lopes. Proudly created with Wix.com

bottom of page